NAG C Library Function Document

nag robust m regsn user fn (g02hdc)

1 Purpose

nag_robust_m_regsn_user_fn (g02hdc) performs bounded influence regression (M-estimates) using an iterative weighted least-squares algorithm.

2 Specification

3 Description

For the linear regression model

$$y = X\theta + \epsilon$$
,

where y is a vector of length n of the dependent variable,

Nag_Comm *comm, NagError *fail)

X is a n by m matrix of independent variables of column rank k,

 θ is a vector of length m of unknown parameters,

and ϵ is a vector of length n of unknown errors with var $(\epsilon_i) = \sigma^2$,

nag_robust_m_regsn_user_fn (g02hdc) calculates the M-estimates given by the solution, $\hat{\theta}$, to the equation

$$\sum_{i=1}^{n} \psi(r_i/(\sigma w_i)) w_i x_{ij} = 0, \quad j = 1, 2, \dots, m,$$
(1)

where r_i is the *i*th residual i.e., the *i*th element of the vector $r = y - X\hat{\theta}$,

 ψ is a suitable weight function,

 w_i are suitable weights such as those that can be calculated by using output from nag_robust_m_regsn_wts (g02hbc),

and σ may be estimated at each iteration by the median absolute deviation of the residuals $\hat{\sigma} = \text{med}_i[|r_i|]/\beta_1$

or as the solution to

$$\sum_{i=1}^{n} \chi(r_i/(\hat{\sigma}w_i))w_i^2 = (n-k)\beta_2$$

for a suitable weight function χ , where β_1 and β_2 are constants, chosen so that the estimator of σ is asymptotically unbiased if the errors, ϵ_i , have a Normal distribution. Alternatively σ may be held at a constant value.

The above describes the Schweppe type regression. If the w_i are assumed to equal 1 for all i, then Huber type regression is obtained. A third type, due to Mallows, replaces (1) by

$$\sum_{i=1}^{n} \psi(r_i/\sigma) w_i x_{ij} = 0, \quad j = 1, 2, \dots, m.$$

This may be obtained by use of the transformations

$$\begin{array}{lll}
w_i^* & \leftarrow \sqrt{w_i} \\
y_i^* & \leftarrow y_i \sqrt{w_i} \\
x_{ij}^* & \leftarrow x_{ij} \sqrt{w_i}, & j = 1, 2, \dots, m
\end{array}$$

(see Marazzi (1987b)).

The calculation of the estimates of θ can be formulated as an iterative weighted least-squares problem with a diagonal weight matrix G given by

$$G_{ii} = \begin{cases} \frac{\psi(r_i/(\sigma w_i))}{(r_i/(\sigma w_i))}, & r_i \neq 0\\ \psi'(0), & r_i = 0. \end{cases}$$

The value of θ at each iteration is given by the weighted least-squares regression of y on X. This is carried out by first transforming the y and X by

$$\tilde{y}_i = y_i \sqrt{G_{ii}}
\tilde{x}_{ij} = x_{ij} \sqrt{G_{ii}}, \quad j = 1, 2, \dots, m$$

and then using a least squares solver. If X is of full column rank then an orthogonal-triangular (QR) decomposition is used; if not, a singular value decomposition is used.

Observations with zero or negative weights are not included in the solution.

Note: there is no explicit provision in the routine for a constant term in the regression model. However, the addition of a dummy variable whose value is 1.0 for all observations will produce a value of $\hat{\theta}$ corresponding to the usual constant term.

nag_robust_m_regsn_user_fn (g02hdc) is based on routines in ROBETH, see Marazzi (1987b).

4 References

Hampel F R, Ronchetti E M, Rousseeuw P J and Stahel W A (1986) Robust Statistics. The Approach Based on Influence Functions Wiley

Huber P J (1981) Robust Statistics Wiley

Marazzi A (1987b) Subroutines for robust and bounded influence regression in ROBETH *Cah. Rech. Doc. IUMSP, No. 3 ROB 2* Institut Universitaire de Médecine Sociale et Préventive, Lausanne

5 Parameters

1: **order** – Nag_OrderType

Input

On entry: the **order** parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by **order** = **Nag_RowMajor**. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: **chi** Function

If $sigma_est = Nag_SigmaChi$, chi must return the value of the weight function χ for a given value of its argument. The value of χ must be non-negative.

Its specification is:

double chi (double t, Nag_Comm *comm)

1: \mathbf{t} - double Input

On entry: the argument for which **chi** must be evaluated.

g02hdc.2 [NP3645/7]

2: **comm** – NAG Comm *

Input/Output

The NAG communication parameter (see the Essential Introduction).

chi is required only if $sigma_est = Nag_SigmaConst$, otherwise it can be specified as a pointer with 0 value.

3: **psi** Function

psi must return the value of the weight function ψ for a given value of its argument.

Its specification is:

double psi (double t, Nag_Comm *comm)

1: \mathbf{t} - double Input

On entry: the argument for which psi must be evaluated.

2: **comm** – NAG Comm *

Input/Output

The NAG communication parameter (see the Essential Introduction).

4: **psip0** – double *Input*

On entry: the value of $\psi'(0)$.

5: **beta** – double *Input*

On entry: if sigma_est = Nag_SigmaRes, beta must specify the value of β_1 .

For Huber and Schweppe type regressions, β_1 is the 75th percentile of the standard Normal distribution (see nag_deviates_normal (g01fac)). For Mallows type regression β_1 is the solution to

$$\frac{1}{n}\sum_{i=1}^{n}\Phi(\beta_{1}/\sqrt{w_{i}})=0.75,$$

where Φ is the standard Normal cumulative distribution function (see nag cumul normal (s15abc)).

If sigma_est = Nag_SigmaChi, beta must specify the value of β_2 .

$$\beta_2 = \int_{-\infty}^{\infty} \chi(z)\phi(z) dz,$$
 in the Huber case;

$$\beta_2 = \frac{1}{n} \sum_{i=1}^n w_i \int_{-\infty}^{\infty} \chi(z) \phi(z) \, dz, \qquad \text{in the Mallows case;}$$

$$\beta_2 = \frac{1}{n} \sum_{i=1}^n w_i^2 \int_{-\infty}^{\infty} \chi(z/w_i) \phi(z) dz$$
, in the Schweppe case;

where ϕ is the standard normal density, i.e., $\frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}x^2)$.

If sigma_est = Nag_SigmaConst, beta is not referenced.

Constraint:

if $sigma_est \neq Nag_sigmaConst$, beta > 0.0.

6: **regtype** – Nag RegType

Input

On entry: determines the type of regression to be performed.

If **regtype** = **Nag_HuberReg**, Huber type regression.

[NP3645/7]

If regtype = Nag_MallowsReg, Mallows type regression.

If **regtype** = **Nag_SchweppeReg**, Schweppe type regression.

7: **sigma_est** – Nag_SigmaEst

Input

On entry: determines how σ is to be estimated.

If sigma_est = Nag_SigmaRes, σ is estimated by median absolute deviation of residuals.

If $sigma_est = Nag_sigmaConst$, σ is held constant at its initial value.

If sigma_est = Nag_SigmaChi, σ is estimated using the χ function.

8: **n** – Integer

On entry: the number, n, of observations.

Constraint: $\mathbf{n} > 1$.

9: **m** – Integer

Input

Input

On entry: the number, m, of independent variables.

Constraint: $1 \leq \mathbf{m} < \mathbf{n}$.

10: $\mathbf{x}[dim]$ – double

Input/Output

Note: the dimension, dim, of the array \mathbf{x} must be at least $\max(1, \mathbf{pdx} \times \mathbf{m})$ when $\mathbf{order} = \mathbf{Nag} \cdot \mathbf{ColMajor}$ and at least $\max(1, \mathbf{pdx} \times \mathbf{n})$ when $\mathbf{order} = \mathbf{Nag} \cdot \mathbf{RowMajor}$.

Where $\mathbf{X}(i,j)$ appears in this document, it refers to the array element

```
if order = Nag_ColMajor, \mathbf{x}[(j-1) \times \mathbf{pdx} + i - 1];
if order = Nag_RowMajor, \mathbf{x}[(i-1) \times \mathbf{pdx} + j - 1].
```

On entry: the values of the X matrix, i.e., the independent variables. $\mathbf{X}(i,j)$ must contain the ijth element of \mathbf{x} , for $i=1,2,\ldots,n;\ j=1,2,\ldots,m$.

If $regtype = Nag_MallowsReg$, then during calculations the elements of x will be transformed as described in Section 3. Before exit the inverse transformation will be applied. As a result there may be slight differences between the input x and the output x.

On exit: unchanged, except as described above.

11: **pdx** – Integer

Input

On entry: the stride separating matrix row or column elements (depending on the value of **order**) in the array \mathbf{x} .

Constraints:

```
if order = Nag_ColMajor, pdx \ge n; if order = Nag_RowMajor, pdx \ge m.
```

12: $\mathbf{y}[\mathbf{n}]$ – double

Input/Output

On entry: the data values of the dependent variable.

y[i-1] must contain the value of y for the ith observation, for $i=1,2,\ldots,n$.

If $regtype = Nag_MallowsReg$, then during calculations the elements of y will be transformed as described in Section 3. Before exit the inverse transformation will be applied. As a result there may be slight differences between the input y and the output y.

On exit: unchanged, except as described above.

13: $\mathbf{wgt}[\mathbf{n}]$ - double

Input/Output

On entry: the weight for the *i*th observation, for i = 1, 2, ..., n.

g02hdc.4 [NP3645/7]

If **regtype** = **Nag_MallowsReg**, then during calculations elements of **wgt** will be transformed as described in Section 3. Before exit the inverse transformation will be applied. As a result there may be slight differences between the input **wgt** and the output **wgt**.

If $\mathbf{wgt}[i-1] \leq 0$, then the *i*th observation is not included in the analysis.

If regtype = Nag_HuberReg, wgt is not referenced.

On exit: unchanged, except as described above.

14: $\mathbf{theta}[\mathbf{m}] - \mathbf{double}$

Input/Output

On entry: starting values of the parameter vector θ . These may be obtained from least-squares regression. Alternatively if $\mathbf{sigma_est} = \mathbf{Nag_SigmaRes}$ and $\mathbf{sigma} = 1$ or if $\mathbf{sigma_est} = \mathbf{Nag_SigmaChi}$ and \mathbf{sigma} approximately equals the standard deviation of the dependent variable, y, then $\mathbf{theta}[i-1] = 0.0$, for $i = 1, 2, \dots, m$ may provide reasonable starting values.

On exit: the M-estimate of θ_i , for i = 1, 2, ..., m.

15: **k** – Integer *

Output

On exit: the column rank of the matrix X.

16: **sigma** – double *

Input/Output

On entry: a starting value for the estimation of σ . **sigma** should be approximately the standard deviation of the residuals from the model evaluated at the value of θ given by **theta** on entry.

Constraint: sigma > 0.0.

On exit: the final estimate of σ if sigma_est \neq Nag_SigmaConst or the value assigned on entry if sigma_est = Nag_SigmaConst.

17: rs[n] – double

Output

On exit: the residuals from the model evaluated at final value of **theta**, i.e., **rs** contains the vector $(y - X\hat{\theta})$.

18: **tol** – double

Input

On entry: the relative precision for the final estimates. Convergence is assumed when both the relative change in the value of **sigma** and the relative change in the value of each element of **theta** are less than **tol**.

It is advisable for tol to be greater than $100 \times machine\ precision$.

Constraint: tol > 0.0.

19: **eps** – double

Input

On entry: a relative tolerance to be used to determine the rank of X.

If eps < machine precision or eps > 1.0 then machine precision will be used in place of tol.

A reasonable value for **eps** is 5.0×10^{-6} where this value is possible.

20: maxit – Integer

Input

On entry: the maximum number of iterations that should be used during the estimation.

A value of maxit = 50 should be adequate for most uses.

Constraint: maxit > 0.

21: **nitmon** – Integer

Input

On entry: determines the amount of information that is printed on each iteration.

If **nitmon** ≤ 0 no information is printed.

If nitmon > 0 then on the first and every nitmon iterations the values of sigma, theta and the change in theta during the iteration are printed.

22: **outfile** – char *

On entry: a null terminated character string giving the name of the file to which results should be printed. If **outfile** = **NULL** or an empty string then the stdout stream is used. Note that the file will be opened in the append mode.

23: **nit** – Integer * Output

On exit: the number of iterations that were used during the estimation.

24: **comm** – NAG_Comm *

Input/Output

The NAG communication parameter (see the Essential Introduction).

25: **fail** – NagError *

Input/Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE INT

```
On entry, \mathbf{n} = \langle value \rangle.
Constraint: \mathbf{n} > 1.
```

On entry, $\mathbf{pdx} = \langle value \rangle$.

Constraint: $\mathbf{pdx} > 0$.

On entry, $\mathbf{m} = \langle value \rangle$.

Constraint: $\mathbf{m} \geq 1$.

On entry, $\mathbf{maxit} = \langle value \rangle$.

Constraint: maxit > 0.

NE_INT_2

```
On entry, \mathbf{pdx} = \langle value \rangle, \mathbf{n} = \langle value \rangle.
```

Constraint: $pdx \ge n$.

On entry, $\mathbf{pdx} = \langle value \rangle$, $\mathbf{m} = \langle value \rangle$.

Constraint: $pdx \ge m$.

On entry, $\mathbf{n} \leq \mathbf{m}$: $\mathbf{n} = \langle value \rangle$, $\mathbf{m} = \langle value \rangle$.

NE ENUM INT

```
On entry, sigma\_est = \langle value \rangle, beta = \langle value \rangle.
Constraint: if sigma\_est \neq Nag\_SigmaConst, beta > 0.0.
```

NE_CHI

Value given by **chi** function $\langle 0: \mathbf{chi}(\langle value \rangle) = \langle value \rangle$.

NE_CONVERGENCE_SOL

Iterations to solve weighted least squares equations failed to converge.

NE CONVERGENCE THETA

Iterations to calculate estimates of **theta** failed to converge in **maxit** iterations: $maxit = \langle value \rangle$.

g02hdc.6 [NP3645/7]

NE FULL RANK

Weighted least squares equations not of full rank: rank = $\langle value \rangle$.

NE REAL

```
On entry, beta = \langle value \rangle.
Constraint: beta > 0.
On entry, sigma = \langle value \rangle.
Constraint: sigma > 0.
On entry, tol = \langle value \rangle.
Constraint: tol > 0.
```

NE ZERO DF

```
Value of \mathbf{n} - \mathbf{k} \le 0: \mathbf{n} = \langle value \rangle, \mathbf{k} = \langle value \rangle.
```

NE_ZERO_VALUE

Estimated value of sigma is zero.

NE ALLOC FAIL

Memory allocation failed.

NE BAD PARAM

On entry, parameter (value) had an illegal value.

NE NOT WRITE FILE

Cannot open file \(\frac{\cup value}{\cup} \) for writing.

NE NOT CLOSE FILE

Cannot close file \(\text{value} \).

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy

The accuracy of the results is controlled by tol.

8 Further Comments

In cases when $sigma_est \neq Nag_SigmaConst$ it is important for the value of sigma to be of a reasonable magnitude. Too small a value may cause too many of the winsorised residuals, i.e., $\psi(r_i/\sigma)$, to be zero, which will lead to convergence problems and may trigger the $fail.code = NE_FULL_RANK$ error.

By suitable choice of the functions **chi** and **psi** this routine may be used for other applications of iterative weighted least-squares.

For the variance-covariance matrix of θ see nag robust m_regsn_param_var (g02hfc).

9 Example

Having input X, Y and the weights, a Schweppe type regression is performed using Huber's ψ function. The function \text{\text{tbetcal calculates the appropriate value of } \beta_2.

9.1 Program Text

```
/* nag_robust_m_regsn_user_fn(g02hdc) Example Program.
 * Copyright 2002 Numerical Algorithms Group.
 * Mark 7, 2002.
#include <math.h>
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg02.h>
#include <nags.h>
#include <nagx01.h>
#include <nagx02.h>
static double chi(double t, Nag_Comm *comm);
static double psi(double t, Nag_Comm *comm);
static void betcal(Integer n, double wgt[], double *beta);
int main(void)
  /* Scalars */
  double beta, eps, psip0, sigma, tol;
  Integer exit_status, i, ix, j, k, m, maxit, n, nit, nitmon;
  Integer pdx;
  NagError fail;
  Nag_OrderType order;
  Naq_Comm comm;
  /* Arrays */
  double *rs=0, *theta=0, *wgt=0, *x=0, *y=0;
#ifdef NAG_COLUMN_MAJOR
#define X(I,J) \times [(J-1) * pdx + I - 1]
 order = Nag_ColMajor;
#else
#define X(I,J) \times [(I-1) * pdx + J - 1]
  order = Nag_RowMajor;
#endif
  INIT_FAIL(fail);
  exit_status = 0;
  Vprintf("g02hdc Example Program Results\n");
  /* Skip heading in data file */
  Vscanf("%*[^\n] ");
  /* Read in the dimensions of X */
  Vscanf("%ld%ld%*[^\n] ", &n, &m);
  /* Allocate memory */
  if ( !(rs = NAG_ALLOC(n, double)) ||
       !(theta = NAG_ALLOC(m, double)) ||
       !(wgt = NAG_ALLOC(n, double)) ||
       !(x = NAG\_ALLOC(n * m, double)) | |
       !(y = NAG_ALLOC(n, double)))
      Vprintf("Allocation failure\n");
      exit_status = -1;
      goto END;
#ifdef NAG_COLUMN_MAJOR
 pdx = n;
#else
  pdx = m;
#endif
```

g02hdc.8 [NP3645/7]

```
/* Read in the X matrix, the Y values and set X(i,1) to 1 for the */
  /* constant term */
  for (i = 1; i \le n; ++i)
       {
            for (j = 2; j \le m; ++j)
            Vscanf("%lf", &X(i,j));
Vscanf("%lf%*[^\n] ", &y[i - 1]);
            X(i, 1) = 1.0;
   /* Read in weights */
  for (i = 1; i \le n; ++i)
            Vscanf("%lf", &wgt[i - 1]);
            Vscanf("%*[^\n] ");
  betcal(n, wgt, &beta);
  /* Set other parameter values */
  ix = 9;
  maxit = 50:
  tol = 5e-5;
  eps = 5e-6;
  psip0 = 1.0;
  /* Set value of isigma and initial value of sigma */
  sigma = 1.0;
   /* Set initial value of theta */
  for (j = 1; j \le m; ++j)
      theta[j - 1] = 0.0;
   /* Change nitmon to a positive value if monitoring information
    * is required
    */
  nitmon = 0;
  /* Schweppe type regression */
  g02hdc(order, chi, psi, psip0, beta, Nag_SchweppeReg, Nag_SigmaChi, n, m,
                   x, pdx, y, wgt, theta, &k, &sigma, rs, tol, eps, maxit,
                   nitmon, 0, &nit, &comm, &fail);
  Vprintf("\n");
  if (fail.code != NE_NOERROR && fail.code != NE_FULL_RANK)
            Vprintf("Error from g02hdc.\n%s\n", fail.message);
            exit_status = 1;
            goto END;
       }
  else
            if (fail.code == NE_FULL_RANK)
                      Vprintf("g02hdc returned with message %s\n", fail.message);
                      Vprintf("\n");
                     Vprintf("Some of the following results may be unreliable\n");
            Vprintf("g02hdc required %4ld iterations to converge\n", nit);
            Vprintf("
                                                                              k = %4ld \setminus n'', k);
            Vprintf("
                                                                      Sigma = %9.4f\n", sigma);
            Vprintf("
                                          Theta\n");
            for (j = 1; j <= m; ++j)
    Vprintf("%9.4f\n", theta[j - 1]);</pre>
            \label{thm:printf("\n");} % \begin{center} \begin
            Vprintf(" Weights Residuals\n");
            for (i = 1; i \le n; ++i)
                 Vprintf("%9.4f%9.4f\n", wqt[i - 1], rs[i - 1]);
       }
END:
  if (rs) NAG_FREE(rs);
  if (theta) NAG_FREE(theta);
```

```
if (wgt) NAG_FREE(wgt);
  if (x) NAG_FREE(x);
  if (y) NAG_FREE(y);
  return exit_status;
static double psi(double t, Nag_Comm *comm)
  double ret_val;
  if (t \le -1.5)
   ret_val = -1.5;
  else if (fabs(t) < 1.5)
   ret_val = t;
  else
   ret_val = 1.5;
  return ret_val;
}
static double chi(double t, Nag_Comm *comm)
  /* Scalars */
  double ret_val;
  double ps;
  ps = 1.5;
  if (fabs(t) < 1.5)
   ps = t;
  ret_val = ps * ps / 2.0;
  return ret_val;
static void betcal(Integer n, double wgt[], double *beta)
  /* Scalars */
  double amaxex, anormc, b, d2, dc, dw, dw2, pc, w2;
  Integer i, ifail;
  /\star Calculate BETA for Schweppe type regression \star/
  /* Function Body */
  amaxex = -log(XO2AKC);
  anormc = sqrt(X01AAC * 2.0);
  d2 = 2.25;
  *beta = 0.0;
  for (i = 1; i \le n; ++i)
      w2 = wgt[i-1] * wgt[i-1];
      dw = wgt[i-1] * 1.5;
      ifail = 0;
      pc = s15abc(dw);
      dw2 = dw * dw;
      dc = 0.0;
      if (dw2 < amaxex)</pre>
       dc = exp(-dw2 / 2.0) / anormc;
      b = (-dw * dc + pc - 0.5) / w2 + (1.0 - pc) * d2;

*beta = b * w2 / (double) (n) + *beta;
  return;
```

Program Data

```
g02hdc Example Program Data
   5
        3
                   : N M
  -1.0 -1.0 10.5
                   : X2 X3 Y
```

```
-1.0 1.0 11.3

1.0 -1.0 12.6

1.0 1.0 13.4

0.0 3.0 17.1 : End of X1 X2 and Y values

0.4039 : WGT

0.5012

0.4039

0.5012

0.4039

0.5012

0.4039 : End of the weights
```

9.3 Program Results

[NP3645/7] g02hdc.11 (last)